Abstract

AbstractThis paper investigates the application of high-order elements within the framework of the arbitrary Lagrangian-Eulerian method for the analysis of elastoplastic problems involving large deformations. The governing equations of the method as well as its important aspects such as the nodal stress recovery and the remapping of state variables are discussed. The efficiency and accuracy of 6-, 10-, 15-, and 21-noded triangular elements are compared for the analysis of two geotechnical engineering problems, namely, the behavior of an undrained layer of soil under a strip footing subjected to large deformations and the soil behavior in a biaxial test. The use of high-order elements is shown to increase the accuracy of the numerical results and to significantly decrease the computational time required to achieve a specific level of accuracy. For problems considered in this study, the 21-noded elements outperform other triangular elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.