Abstract

Portable traffic signals with fixed-time signal plans are a common type of traffic control at work zones with shuttle traffic. The most-used alternatives are flagging and intelligent transport systems with traffic-actuated signals. These can provide more efficient traffic control, but existing policies often do little to encourage their practical application. This paper provides a clear and accessible overview of shuttle operations and a comparison of the main signal control types while addressing some knowledge gaps, such as whole-day operation efficiency. The relations between different variables of the signal plan and traffic flow are derived to build a theoretical framework and models for both deterministic and random arrivals to estimate delays and to find the optimal signal plan setting for a wide range of circumstances. The hypothetical scenarios are supported by a case study. Traffic and signal control data from several construction phases of a work zone with shuttle operation were gathered, processed, analysed, and used to compare different control scenarios. The results provide solid evidence for the efficiency of the dynamic systems. The magnitude of the difference is heavily affected by circumstances. The efficiency of the green signal almost doubled with the dynamic control. The case study also revealed a severe impact of road conditions (milling) on the work zone capacity. Several standards and policies are proposed based on the findings to encourage wider and more efficient adoption of traffic-actuated signals in work zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.