Abstract
The effectiveness of the conventional chemotherapy for cancer are compromised as the cancer cells advances in their malignancy level as they acquired drug resistance. In this study, we aimed to evaluate the efficiency of aminolevulinic acid-photodynamic therapy (ALA-PDT) against cancer of various malignancy levels, indicated by the expression level of receptor associated nuclear factor-κB ligand (RANKL), through the expression levels of ALA uptake transporters. We established a malignancy model by gradually increasing the cell density of cancer cells. Western blotting was used to study the expression levels of RANKL, ALA uptake transporters and the cell density-dependent Yes-associated protein (YAP) under different cell densities. The amount of protoporphyrin (PpIX) produced and cell viability were then studied using high performance liquid chromatography (HPLC) and ALA-PDT assay. Our study showed that the amount of PpIX production doubled in high cell density/cancer malignancy cultures and the effectiveness of ALA-PDT when subjected to light irradiation at 635 nm are significantly at higher cancer malignancy. We observed that the expression levels of ALA uptake transporters and YAP correlated with higher cell density/cancer malignancy, suggesting a possible relationship among these three factors. These findings suggest that ALA-PDT is more effective in cancer cells of higher malignancy due to the upregulation of transporters involved in ALA uptake.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have