Abstract
In this work we demonstrate single axial p-i-n junction InP nanowire (NW) solar cells grown by selective-area metal organic vapor phase epitaxy (SA-MOVPE) technique. A power conversion efficiency of up to 6.5% was realized in the single NW solar cell (horizontally lying on substrate) without any surface passivation. Electron beam induced current (EBIC) and photocurrent mapping were performed to investigate the electrical properties of the NW solar cells and their influence on device performance, which are essential for an in-depth understanding of the design requirements for NW solar cells. A further conformal SiNx layer was deposited on the single NW solar cell devices by plasma-enhanced chemical vapor deposition (PECVD). Overall efficiency improvement has been obtained in the SiNx-coated devices with a remarkable up to 62% increase to a peak efficiency of 10.5%, which to our knowledge is the highest efficiency reported for horizontal single NW solar cells. This has been attributed to an enhanced optical antenna effect and effective surface passivation due to SiNx coating, as respectively confirmed by numerical simulation and time-resolved photoluminescence (TRPL) measurements. Our work demonstrates that dielectric coating is a promising simple approach to achieve high performance III–V NW solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.