Abstract
ABSTRACTThe ongoing transition in the energy sector demands more efficient and reliable energy storage solutions. Our study addresses this need by optimizing the industrial process of liquefied natural gas (LNG) storage, focusing on enhancing thermal performance and energy efficiency. Leveraging a standard LNG storage design, we meticulously evaluated critical supporting variables, modeled key components, and conducted integrated cycle simulations. The primary goal was to minimize the volume of stored gas (achieving a reduction to approximately 1/600th of its gaseous state) while maintaining optimal storage conditions. Our methodology prioritizes insulation over pressure‐bearing factors in large‐scale tanks, aligning with the unique thermal challenges of LNG storage. Simulations were based on methane, which constitutes over 86% of the natural gas in the Middle East, ensuring relevance to the region's resources. The results are promising, with a compression stage reaching a maximum pressure of 2.377, an energy efficiency ratio of 60.71%, and a performance coefficient of 3.188. These findings offer a significant step forward in developing more effective and efficient LNG storage systems, contributing to the broader goal of sustainable energy management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have