Abstract

In present study, a new reactor configuration is developed which integrates photochemical hydrogen production with an electrochemical chloralkali process. The effects of different parameters on rate of hydrogen, chlorine and sodium hydroxide production are experimentally examined and discussed. The parameters include applied voltage, varied from 4 V to 5 V, amount of catalyst, varied from 1 g/425 mL to 4 g/425 mL, and light intensity, varied from 20 W/m2 to 55 W/m2. Factorial design of experiments is applied and an analysis of variance (ANOVA) is used to analyze the experimental results. Energy and exergy efficiencies are also examined. An optimization study is performed to find the optimal catalyst concentration. An optimized catalyst concentration in salty water is used to examine its effect on the rate of hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.