Abstract

Summary In this paper, a small non-imaging focusing heliostat is presented, and an analytical model for assessing its performance is described. The main novelty of the system lies in the tracking mechanism and the mirror mount, which are based on off-the-shelf components and allow a good trade-off between accuracy and costs. The concentrator mirrors are moved by this two-axis tracking machinery to reflect the sun's rays onto a fixed target, the dimensions of which can be varied to suit the user's needs. A prototype plant to be located in central Italy was designed and simulated with a ray-tracing algorithm, and it comprises 90 heliostats for a total reflective area of 7.5 m2. The reflected solar rays are tracked taking the mechanical positioning errors of the tracking system into account. The total flux of radiation energy hitting the target was determined, and intensity distribution maps were drawn. Simulations showed that the system's optical efficiency can exceed 90% in summer, despite the tracking errors, mainly because of the smaller distance between the heliostats and the receiver. The solar concentration ratio over a receiver of 250 mm in diameter reached 80 suns with a very good uniformity. Over a 400-mm receiver, the concentrated radiation was less uniform, and the solar concentration ratio reached 50 suns, with a higher optical efficiency and collected solar radiation. The present concentration ratio is still suitable for many applications ranging from the electric power production, industrial process heat, and solar cooling. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.