Abstract

The sorption-enhanced method can change the thermodynamic equilibrium by absorbing CO2. However, it also brings about the problems of high regeneration temperature of adsorbent and large regeneration energy consumption. In order to study the impact of enhanced adsorption methods on the overall energy cost of the system in the hydrogen production process, this paper analyzes and compares steam methane reforming and reactive adsorption-enhanced steam methane reforming with the energy consumption of hydrogen production products as the evaluation index. The results showed that the energy consumption per unit hydrogen production decreased from 276.21 MJ/kmol to 131.51 MJ/kmol, and the decomposition rate of H2O increased by more than 20% after the addition of adsorption enhancement method. It is proved that the advantage of sorption enhanced method on pre-separation of CO2 in the product makes up for the disadvantage of energy consumption of adsorbent regeneration. In addition, the ability of the process to obtain H element is improved by the high decomposition rate of H2O, which realizes a more rational distribution of the element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.