Abstract
BackgroundHospital environment in patient care has been linked on healthcare-associated infections (HAI). No touch disinfection technologies that utilize pulsed xenon ultraviolet light has been recognized to prevent infection in contaminated environments. The purpose of this study was: 1) to evaluate the effectiveness of pulsed-xenon ultraviolet light (PX-UV) disinfection for the reduction of bacteria on environmental surfaces of Hospital General Enrique Garcés, and 2) to evaluate the in-vitro efficacy against multi-drug resistance microorganisms.MethodsThis was a quality-improvement study looking at cleaning and disinfection of patient areas. During the study, a total of 146 surfaces from 17 rooms were sampled in a secondary 329-bed public medical center. Microbiological samples of high-touch surfaces were taken after terminal manual cleaning and after pulsed xenon ultraviolet disinfection. Cleaning staff were blinded to the study purpose and told clean following their usual protocols. For positive cultures PCR identification for carbapenemase-resistance genes (blaKPC, blaIMP, blaVIM, and blaNDM) were analyzed and confirmed by sequencing. The total number of colony forming units (CFU) were obtained and statistical analyses were conducted using Wilcoxon Rank Sum tests to evaluate the difference in CFU between terminal manual cleaning and after pulsed xenon ultraviolet disinfection.ResultsAfter manual disinfection of 124 surfaces showed a total of 3569 CFU which dropped to 889 CFU in 80 surfaces after pulsed xenon disinfection (p < 0.001). Overall, the surface and environmental contamination was reduced by 75% after PX-UV compared to manual cleaning and disinfection. There were statistically significant decreases in CFU counts of high touch surfaces in OR 87% (p < 0.001) and patient rooms 76% (p < 0.001). Four rooms presented serine carbapenemases blaKPC, and metallo beta-lactamases blaNDM, blaVIM, blaIMP. confirmed by PCR and sequencing. The in-vitro testing with endemic strains found that after five minutes of pulsed xenon ultraviolet exposure an 8-log reduction was achieved in all cases.ConclusionThis study is one of the first of its kind in an Ecuador Hospital. We found that pulsed-xenon ultraviolet disinfection technology is an efficacious complement to the established manual cleaning protocols and guidelines in the significant reduction of MDRO.
Highlights
Hospital environment in patient care has been linked on healthcare-associated infections (HAI)
After manual disinfection 124 surfaces showed a total of 3569 colony forming units (CFU), which dropped to 889 CFU in 80 surfaces after pulsed-xenon ultraviolet light (PX-UV) disinfection
The surface and environmental contamination was reduced by 75% (p < 0.001) after PX-UV compared to manual cleaning and disinfection
Summary
Hospital environment in patient care has been linked on healthcare-associated infections (HAI). No touch disinfection technologies that utilize pulsed xenon ultraviolet light has been recognized to prevent infection in contaminated environments. The use of chemical disinfectants presents occupational health risks for EVS staff that use them [8] Due to these limitations of chemical disinfectants for manual cleaning, no-touch systems for disinfection and environmental decontamination are being considered the standard of care. One type of no-touch disinfection system uses pulsed-xenon ultraviolet light (PX-UV) to generate germicidal wavelengths of light (200-280 nm), which has shown to be 95 to 99% effective in eliminating hospital pathogens, including MDROs, from high touch surfaces and has been associated with significant reductions in HAIs [9,10,11,12,13,14,15,16]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have