Abstract

A systematic study was conducted on the ability of potassium permanganate absorbent to remove low levels of ethylene from the atmosphere. Absorption of potassium permanganate onto alumina beads by dipping in a saturated solution was maximal at 2 g/100 g after 2 hours at 20 °C and 4 g/100 g after 1 hour at 65 °C. Commercial alumina-based absorbents were found to contain potassium permanganate at 2.7 to 6.0 g/100 g suggesting many are prepared at elevated temperature. Trials in a closed system at 20 °C and 60% to 70% RH with alumina beads containing potassium permanganate at 4 g/100 g showed a logarithmic decrease in ethylene concentration with 90% of the ethylene removed after 2.5 to 3.0 hours. Relative humidity (RH) had a marked inverse effect on ethylene absorption with reactivity at 100% RH calculated to be 15% of that at 0% RH. Performance of potassium permanganate where ethylene was continually generated by a continuous flow of ethylene at 14 μL·h-1 through the container showed a steady state was attained within 1 hour and maintained for 24 hours. Ethylene removal increased linearly with bead weight and ranged from 30% with 1 g to 90% with 50 g. Examination over 20 days showed a continuing decrease in rate of ethylene removal which after 14 days had declined to 10% of incoming ethylene although 44% of the original level of potassium permanganate still remained in the beads. Calculations based on known endogenous ethylene production rates suggest that at 20 °C and 90% RH, use of a potassium permanganate-alumina absorbent would be beneficial with produce having a low level of ethylene generation. Suitability for larger packages of produce generating higher ethylene levels is questionable as >1 kg of absorbent may be required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.