Abstract

Delivery of imaging agents to brain glioma is challenging because the blood–brain barrier (BBB) functions as a physiological checkpoint guarding the central nervous system from circulating large molecules. Moreover, the ability of existing probes to target glioma has been insufficient and needs to be improved. In present study, PEG-based long circulation, CdSe/ZnS quantum dots (QDs)-based nanoscale and fluorescence, asparagines-glycine-arginine peptides (NGR)-based specific CD13 recognition were integrated to design and synthesize a novel nanoprobe by conjugating biotinylated NGR peptides to avidin-PEG-coated QDs. Our data showed that the NGR-PEG-QDs were nanoscale with less than 100 nm and were stable in various pH (4.0~8.0). These nanomaterials with non-toxic concentrations could cross the BBB and target CD13-overexpressing glioma and tumor vasculature in vitro and in vivo, contributing to fluorescence imaging of this brain malignancy. These achievements allowed groundbreaking technological advances in targeted fluorescence imaging for the diagnosis and surgical removal of glioma, facilitating potential transformation toward clinical nanomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call