Abstract

Near surface mounted (NSM) and externally bonded reinforcement (EBR) strengthening techniques are based on the use of carbon fiber reinforced polymer (CFRP) materials and have been used for the structural rehabilitation of concrete structures. In the present work, the efficacies of the NSM and EBR techniques for the flexural and shear strengthening of reinforced concrete beams are compared carrying out two experimental groups of tests. For the flexural strengthening, the efficacy of applying CFRP laminates according to NSM is compared to those resulting from applying CFRP laminates and wet lay-up CFRP sheets according to EBR technique. The influences of the equivalent reinforcement ratio (steel and laminates) and spacing of the laminates on the efficiency of the NSM technique for the flexural strengthening is also investigated. A numerical strategy is implemented to analyze the applicability of the FRP effective strain concept, proposed by ACI and fib in the design of FRP systems for the flexural strengthening. To assess the efficacy of the NSM technique for the shear strengthening of concrete beams, four beam series of distinct depth and longitudinal tensile steel reinforcement ratio are tested. Each series is composed of one beam without any shear reinforcement and one beam using the following shear reinforcing systems: conventional steel stirrups; strips of wet lay-up CFRP sheet of U configuration applied according to EBR technique; and laminates of CFRP embedded into vertical or inclined (45°) pre-cut slits on the concrete cover of the beam lateral faces, according to the NSM technique. Using the obtained experimental results, the performance of the analytical formulations proposed by ACI, fib and Italian guidelines is appraised.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call