Abstract

In this study, the laminar nanofluid flow in the microchannel with a discontinuous-boundary condition was investigated. Considering the slip condition, heat transfer and entropy generation were studied. Different layouts with the discontinuous-boundary condition (i.e. layouts A, B and C) were introduced and compared with the basic microchannel (microchannel with the continuous-boundary condition). Reynolds number and non-slip coefficient parameters on the effect of using discontinuous-boundary condition were discussed. The results revealed that the application of discontinuous-boundary condition affects the heat transfer as well as entropy generation so that the effects are more pronounced at higher Reynold number. By applying discontinuous-boundary condition, the heat transfer through the layouts of A, B and C was 34, 45 and 53% higher than the base microchannel. Simultaneously, the entropy generation through the layouts of A, B and C intensified by 31, 39 and 46%, respectively. The results proved that the applying slip condition has two positive effects as well as a negative effect. It enhanced the heat transfer and diminished the viscose entropy generation, but on the other hand, it intensified the thermal entropy generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.