Abstract

Background Natural compounds and biomaterials, such as nanohydrogels, have gained interest due to their biocompatibility and tissue regeneration potential. A novel nanohydrogel was prepared by employing Tridax procumbens, a traditional plant with anti-inflammatory properties and chitosan nanoparticles and a natural bioadhesive with potent antimicrobial and antioxidant effects and dopamine, which has been shown to regulate angiogenesis and influence cell growth. The objective of this study was to examine how human gingival fibroblast (HGF) cells respond to a nanohydrogel formulation containing dopamine, chitosan nanoparticles, and T. procumbens extract in terms of cell viability and cell migration. Methods From human gingival tissue, fibroblasts were cultured. A nanohydrogel formulation was prepared by combining dopamine, chitosan nanoparticles, and T. procumbens extract. Three groups were evaluated: Group 1 (nanohydrogel containing dopamine, chitosan nanoparticles, and T. procumbens extract (DnCTP)), Group 2 (chitosan nanoparticles and T. procumbens extract (nCTP)), and Group 3(T. procumbens extract (TP)). The MTT assay was used to measure the percentage of cell viability and a scratch assay to observe cell migration in the wounded area at different concentrations. The data were tabulated in Microsoft Excel (Microsoft Corporation, USA) and imported to IBM SPSS Statistics for Windows, version 23.0 (released 2015, IBM Corp., Armonk, NY), and the Mann-Whitney U test was conducted to statistically analyze the cell viability for different concentrations within the three groups. Results The nanohydrogel formulation (DnCTP) showed dose-dependent effects on cell viability with the highest cell viability at 40 µL/mL concentration, and higher concentrations of 80 µL/mL exhibited cytotoxic effects. nCTP and TP showed decreased cell viability at 80 µL/mL concentration(p < 0.05), indicating potential cytotoxicity at higher concentrations. DnCTP showed improved cell migration in the scratch assay as compared to other groups (nCTP and TP), indicating its potential for facilitating wound healing. Conclusion Dopamine, chitosan nanoparticles, and T. procumbens worked together synergistically to create a nanohydrogel formulation (DnCTP) that showed promise for improving wound healing in human gingival fibroblast cells at a dose-dependent concentration, which may therefore work as an excellent wound-healing agent in periodontal and peri-implant therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.