Abstract

Capping and oxidation by lanthanum-modified bentonite (LMB) and calcium nitrate (CN) has a dual effect of deep phosphorus (P)/arsenic (As) clearance and surface P/As blockade. However, little information is available on the effect of LMB and CN on heavy metals. In this study, we hypothesize that LMB and CN exerted the same synergistic effect on heavy metals as P and As. We verified this through Rhizon samplers, diffusive gradients in thin films technology (DGT) and planar optode (PO) methods. The results showed that individual and combined LMB and CN treatments temporarily decreased but eventually increased the dissolved oxygen of the sediment-water interface (SWI). DGT-labile sulfide in the surface 110 mm sediment, soluble Fe(II) and DGT-labile Fe(II) in the surface 80 mm sediment were eliminated within 30 days by CN and LMB + CN treatments. A temporary sharp increase in soluble Fe, Mn, Co, and DGT-labile Mn, Co, Cu, and Ni was observed in CN and LMB + CN groups probably due to sulfide oxidation and carbonate dissolution. LMB + CN group showed a less-intense increase in DGT-labile metals and less metal release than the CN group (inferred from the total metal content). This indicates that LMB and CN had a synergistic effect on heavy metals. When using the LMB + CN treatment, LMB partly adsorbed and blocked metal release in sulfide and carbonate bound forms and finally transformed them into Fe and Mn oxides and residual forms. We suggest that CN should be combined with capping agents (at an appropriate pH) to compact sediments and block metal exchange at the SWI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call