Abstract

Purpose The effect of zirconium, zinc, calcium and rare earth group as the alloying elements on mechanical properties and corrosion behavior of magnesium alloys was investigated in the simulated body fluid. Design/methodology/approach Pure magnesium and the alloying elements were melted and zirconium was finally added to obtain different alloys. The castings were annealed and some samples were aged heat treated. X-ray fluorescence was used for the elemental analysis and LSV was used for electrochemical corrosion evaluations. Findings Results showed that corrosion resistance decreases with increasing zirconium content. The lowest corrosion rate was obtained for the samples containing 0.3% and 0.45% of Zr from annealed and aging heat-treated samples, respectively. Yield stress enhances with increasing the zirconium content and degrades by the aging heat treatment. Originality/value These alloys were studied for the first time. Effect of casting without using protective flux and vacuum furnaces. Effect of annealing at 440°C for 2 h and artificial aging at 200°C for 16 h. Alloy’s electrochemical behavior on the body’s simulation environment has been investigated. Improvement of mechanical properties after annealing heat treatment by high zirconium percentage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call