Abstract
Simple SummaryAntimicrobial resistance issues and growing consumer demand promote the need for antibiotic-free meat production. Fostering animal productivity without antibiotic growth promoters accelerates the use of non-antibiotic feed additives and encourages researchers to gain a deeper understanding of diet-gut microbiota interactions. Little information is available about the effects of single strain probiotic bacteria Clostridium butyricum and wheat bran on the gut microbiota of chickens using next-generation sequencing. Therefore, these components were evaluated in the present study on gut microbiota composition and other gut health characteristics of broiler chickens. Results showed that probiotic supplementation decreased cecal Akkermansia spp. abundance, whereas wheat bran supplementation increased the relative abundance of Akkermansia spp. compared to the control and symbiotic groups, respectively. Dietary treatment also altered cecal crypt depth and had a trend to modify cecal fermentation profiles. Besides, the combination of probiotic and wheat bran supplementation did not have further effects on any investigated parameters. Members of the Akkermansia genus have several beneficial health effects in mammals, but less is known about its role in chicken health. The results of the present study expand our understanding of diet-gut microbiota interaction in chickens, which helps to approximate antibiotic-free meat production.Feed additives that can improve intestinal health and maintain a diverse and resilient intestinal microbiota of poultry are of great importance. Thus, the current study investigated the effects of a single strain butyric acid-producing Clostridium (C. butyricum) with (symbiotic) or without wheat bran supplementation on cecal microbiota composition and gut health characteristics of broiler chickens. In total, 384 male Ross 308 day-old chickens were divided into four dietary treatment groups and fed ad libitum until day 37 of life. Cecal samples were taken for Illumina sequencing and pH and short-chain fatty acid analyses, as well as for histological analysis at the end of the experimental period. Neither of the supplemented diets improved chicken growth performance. Caecum was dominated by the members of Bacteroidetes phyla followed by Firmicutes in each dietary group. At the genus level, Bacteroides, Oscillospira, Akkermansia, Faecalibacterium, Ruminococcus and Streptococcus genera exceeded 1% relative abundance. Dietary treatment influenced the relative abundance of the Akkermansia genus, which had a lower relative abundance in the C. butyricum group than in the other groups and in the symbiotic group compared to the wheat bran supplemented group. Dietary treatment also altered cecal crypt depth and had a trend to modify the cecal fermentation profile. Additive effects of wheat bran and C. butyricum supplementation were not detected. Our results suggest that Akkermansia muciniphila colonization in chicken can be influenced by diet composition.
Highlights
There is growing interest in the development of alternatives to antibiotics in the poultry industry in order to substitute their beneficial effects, such as improved performance [1]
Numerous studies have been conducted on chicken gut microbiota with the help of next-generation sequencing (NGS) technologies, there is still a knowledge gap and inconsistency in results concerning the effects of pre- and probiotics on chicken gut health
C. butyricum supplementation had no effect on cecal crypt depth (Table 4)
Summary
There is growing interest in the development of alternatives to antibiotics in the poultry industry in order to substitute their beneficial effects, such as improved performance [1]. Intestinal immunity, integrity and functionality are three main components in the characterization of intestinal health status, which reflect gut health [2]. Dietary manipulation of the microbiota could be a feasible way to optimize gut health and avoid performance losses due to impaired gut functions [4]. Next-generation sequencing (NGS) has become a tool to discover novelties with regard to relationships within the gut ecosystem [1]. Numerous studies have been conducted on chicken gut microbiota with the help of NGS technologies, there is still a knowledge gap and inconsistency in results concerning the effects of pre- and probiotics on chicken gut health
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.