Abstract
Laser welding is increasingly used in industries because it allows high production cycle time and single-sided welding, but is characterized by a high sensitivity to joint preparation. By inserting filler wires, the sensitivity to joint preparation can be suppressed. In this study, the effect of welding variables on the bead geometry and melted droplet transfer were investigated. Two wires with different thermal diffusivities and densities were selected: stainless steel (STS) and aluminum (Al) wires. According to the wire feeding angle, the melting area tended to differ between the STS and Al wires. This implied that the wire feeding angle had to consider the absorption rate of the material for the laser wavelength. With an increase in the distance between the wire tip and the substrate, the dominant force acting on the droplet was changed from surface tension to gravity. Therefore, the distance was considered as a major factor in determining the droplet transfer mode. In all cases, the droplet transfer period exhibited relatively small deviation when the wire feeding direction was leading. Furthermore, the focal length effects on droplet transfer were irrelevant.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have