Abstract

Effects of the addition of water on solvation layers of imidazolium-type room temperature ionic liquids (RT-ILs) have been studied through force curve measurements of atomic force microscopy (AFM). Two kinds of RT-ILs were employed in this study; one is a hydrophilic RT-IL (1-butyl-3-methylimidazolium tetrafluoroborate, BmimBF4), and the other is a hydrophobic one (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, EmimTFSI). These RT-ILs form solvation layers on hydrophilic solid substances (i.e., silica and mica) in the absence of added water. The addition of water into BmimBF4 resulted in the disruption of the solvation layers and then the formation of an interfacial water phase on silica. In contrast, the formation of the interfacial water phase was not evidenced on mica because of the absence of hydrogen-bonding sites on the mica surface. Interestingly, the addition of water into EmimTFSI induced the formation of the interfacial water phase on the two solid surfaces. In the EmimTFSI system, importantly, significantly greater adhesion forces were observed on silica than on mica. This reflects the different formation mechanisms of the interfacial water phase on the two solid surfaces. We conclude that the hydrogen bonding is a key factor in determining whether water molecules can be adsorbed on the solid surfaces, but it is also necessary to take into account the hydrophilic/hydrophobic nature of the RT-ILs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call