Abstract
Solution culture experiments were conducted to investigate the effect of wastewater nitrogen levels and NH4+/NO3- on nitrogen removal ability and the nitrogen component of Myriophyllum aquaticum. Experiments with three nitrogen levels and NH4+/NO3- were set up as follows:20, 100, and 200 mg·L-1and NH4+/NO3- 1:0, 0.5:0.5, and 0:1. The results showed that the biomass of plants increased fastest during the first week. The plants treated with NH4+/NO3-=1:0 with nitrogen levels of 20 and 100 mg·L-1 and those treated with NH4+/NO3-=0.5:0.5 with a nitrogen concentration of 200 mg·L-1 exhibited higher biomass than the others. The removal rates of water total nitrogen, ammonium nitrogen, and nitrate nitrogen during the first week were the maximum for all treatments and increased with water nitrogen levels. There were no significant differences in the removal rate between ammonium nitrogen and nitrate nitrogen with a nitrogen level of 20 mg/L, while with nitrogen levels of 100 and 200 mg·L-1, the nitrate removal rates were higher than those for ammonium nitrogen. The Myriophyllum aquaticum nitrogen accumulation and its contribution rate to nitrogen removal from water and sediment were all increased with water nitrogen levels and increased fastest during the first week. The contribution rate of nitrogen accumulated by plants with NH4+/NO3-=0:1 was the highest with nitrogen levels of 20 mg·L-1, while plants with NH4+/NO3-=0.5:0.5 were the highest with nitrogen levels of 100 and 200 mg·L-1. The protein, amino, and nitrate nitrogen contents in Myriophyllum aquaticum plants were all increased by increasing water nitrogen levels with a ranking of protein content > amino nitrogen content > nitrate nitrogen content. The protein concentrations in plants with NH4+/NO3-=1:0 and NH4+/NO3-=0.5:0.5 were higher regardless of water nitrogen levels, while the amino nitrogen concentration in plants with NH4+/NO3-=1:0 and the nitrate nitrogen content in plants with NH4+/NO3-=0:1 were higher than the others. It was concluded that the nitrogen removal ability of Myriophyllum aquaticum was improved by raising water nitrogen levels under the tested condition, which indicates that Myriophyllum aquaticum could purify high nitrogen wastewater. Myriophyllum aquaticum is an ammonium-nitrophile, but had the strongest capacity for growing and removing wastewater nitrogen exhibited with higher than 100 mg·L-1 nitrogen levels only with equal NH4+ to NO3-. The nitrogen component concentrations of protein, amino, and nitrate in Myriophyllum aquaticum plant were all affected by the ratio of NH4+/NO3-.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have