Abstract

The transport of cations in the cardiomyocytes, crucial for the functioning of the heart, can be affected by walnut diet due to the high content of polyunsaturated fatty acids. Healthy and metabolically compromised rats (drinking 10% fructose solution) were subjected to a diet supplemented with 2.4 g of walnuts for 6 weeks to investigate the effect on proteins involved in cation transport in the heart cells. Fructose increased the level of the α1 subunit of Na+/K+-ATPase and the phosphorylation of extracellular signal-regulated kinase 1/2 in the heart of control and walnut-eating rats, while elevated L-type calcium channel α (LTCCα), sodium-calcium exchanger 1 (NCX1), and Maxi Kα level were observed only in rats that did not consume walnuts. However, walnuts significantly increased the cardiac content of LTCC, NCX1, and Maxi Kα, as well as Kir6.1 and SUR2B subunits of KATP channel, but only in fructose-naive rats. In animals that drank fructose, a significant increasing effect of walnuts was observed only in Akt kinase phosphorylation, which may be a part of the antiarrhythmic mechanism of decreasing cation currents in cardiomyocytes. The walnut diet-induced increase in LTCC and NCX1 expression in healthy rats may indicate intense cardiac calcium turnover, whereas the effect on Kir6.1 and SUR2B subunits suggests stimulation of KATP channel transport in the cardiac vasculature. The effects of walnuts on the cation-handling proteins in the heart, mostly limited to healthy animals, suggest the possible use of a walnut-supplemented diet in the prevention rather than the treatment of cardiological channelopathies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.