Abstract
To investigate the mechanisms underlying the increased prevalence of ventricular fibrillation (VF) in the mechanically compromised heart, we developed a fully coupled electromechanical model of the human ventricular myocardium. The model formulated the biophysics of specific ionic currents, excitation-contraction coupling, anisotropic nonlinear deformation of the myocardium, and mechanoelectric feedback (MEF) through stretch-activated channels. Our model suggests that sustained stretches shorten the action potential duration (APD) and flatten the electrical restitution curve, whereas stretches applied at the wavefront prolong the APD. Using this model, we examined the effects of mechanical stresses on the dynamics of spiral reentry. The strain distribution during spiral reentry was complex, and a high strain-gradient region was located in the core of the spiral wave. The wavefront around the core was highly stretched, even at lower pressures, resulting in prolongation of the APD and extension of the refractory area in the wavetail. As the left ventricular pressure increased, the stretched area became wider and the refractory area was further extended. The extended refractory area in the wavetail facilitated the wave breakup and meandering of tips through interactions between the wavefront and wavetail. This simulation study indicates that mechanical loading promotes meandering and wave breaks of spiral reentry through MEF. Mechanical loading under pathological conditions may contribute to the maintenance of VF through these mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.