Abstract

Coulomb energy differences (Nolen-Schiffer anomalies) of mirror nuclei 17O- 17F and 41Ca- 41Sc are studied by using realistic Hartree-Fock and Woods-Saxon single-particle wave functions which are determined precisely through the analysis of the magnetic form factors of electron scattering. These single-particle wave functions are used to evaluate the Coulomb energy differences due to charge symmetry breaking forces, with new coupling constants determined by the analysis of the scattering lengths of pp and nn system which have been successfully applied to the Coulomb energy difference of 3He- 3H. We also evaluated the effects of the charge symmetry breaking forces using Hartree-Fock wave functions. Together with various other contributions, our calculated values of the Coulomb energy differences, which showed deviations of 3–9% from the experimental values in the previous analysis of Nolen and Schiffer, agree with the experimental values within 1% (2%) accuracy for A = 17 (41).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.