Abstract

The improvement of thermoelectric figure of merit of silicon nanowire (SiNW) can be achieved by lowering its thermal conductivity. In this work, non-equilibrium molecular dynamics method was used to demonstrate that the thermal conductivity of bulk silicon crystal is drastically reduced when it is crafted as SiNW and that it can be reduced remarkably by including vacancy defects. It has been found that ‘centre vacancy defect’ contributes much more in reducing the thermal conductance than ‘surface vacancy defect’. The lowest thermal conductivity that occurs is about 52.1% of that of pristine SiNW, when 2% vacancy defect is introduced in the nanowire. The vibrational density of states analysis was performed to understand the nature of this reduction and it has been found that the various boundary scatterings of phonon significantly reduce the thermal conductivity. Also, larger mass difference due to voids induces smaller thermal conductivity values. These results indicate that the inclusion of vacancy defects can enhance the thermoelectric performance of SiNWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call