Abstract

In the context of rapid urbanisation and an emerging need for a healthy urban environment, revitalising urban spaces and its effects on the urban eco-environment in Chinese cities have attracted widespread attention. This study assessed urban vibrancy from the dimensions of density, accessibility, liveability, diversity, and human activity, with various indicators using an adjusted spatial TOPSIS (technique for order preference by similarity to an ideal solution) method. The study also explored the effects of urban vibrancy on the urban eco-environment by interpreting PM 2.5 and land surface temperature using “big” and “dynamic” data, such as those from mobile and social network data. Thereafter, spatial modelling was performed to investigate the influence of urban vibrancy on air pollution and temperature with inverted and extracted remote sensing data. This process identified spatial heterogeneity and spatial autocorrelation. The majority of the dimensions, such as density, accessibility, liveability, and diversity, are negatively correlated with PM 2.5, thereby indicating that the advancement of urban vibrancy in these dimensions potentially improves air quality. Conversely, improved accessibility increases the surface temperature in most of the districts, and large-scale infrastructure construction generally contributes to the increase. Diversity and human activity appear to have a cooling effect. In the future, applying spatial heterogeneity is advised to assess urban vibrancy and its effect on the urban eco-environment, to provide valuable references for spatial urban planning, improve public health and human wellbeing, and ensure sustainable urban development.

Highlights

  • The urban eco-environment has attracted increasingly widespread concern in the context of rapid urbanisation and low-density urban expansion over the past decade

  • The urban communities with the highest human mobility are in the Hongshan district in the eastern area of Wuhan, where several prestigious universities (e.g., Wuhan University and Huazhong University of Science and Technology) and scenic parks are located

  • Spatial heterogeneity is observed in the urban vibrancy distribution and its impact on the urban eco-environment

Read more

Summary

Introduction

The urban eco-environment has attracted increasingly widespread concern in the context of rapid urbanisation and low-density urban expansion over the past decade. The eco-environment system is composed of all kinds of natural resources that human beings rely on for survival, including water, land and atmosphere [1]. Environmental problems such as air and water pollution, uncontrolled land use, heat island effect and resource scarcity have emerged, which are closely related to human health. The outbreak of COVID-19 has changed the way people live, work, socialise and integrate with urban spaces [4]. This disease has led to a rethinking of the relationship between the urban eco-environment and public health.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call