Abstract

Background: Reports in a northwestern Mexico state linked arsenic (As) in drinking water to DNA damage in people from indigenous communities. However, this correlation remains under discussion due to unknown variables related to nutrition, customs, and the potential presence of other metal(oid)s. Methods: To determine this association, we sampled water from three Yaqui towns (Cócorit, Vícam, and Pótam), and analyzed the metals by ICP-OES. We exposed four separate groups, with five male CD-1 mice each, to provide further insight into the potential effects of untreated drinking water. Results: The maximum concentrations of each metal(oid) in µg·L−1 were Sr(819) > Zn(135) > As(75) > Ba(57) > Mo(56) > Cu(17) > Al(14) > Mn(12) > Se(19). Histological studies revealed brain cells with angulation, satellitosis, and reactive gliosis with significant statistical correlation with Mn and As. Furthermore, the liver cells presented hepatocellular degeneration. Despite the early response, there is no occurrence of both statistical and significative changes in hematological parameters. Conclusions: The obtained results provide experimental insights to understand the potential effects of untreated water with low As and Mn contents in murine models. This fact is noteworthy because of the development of histological changes on both the brain and liver at subchronic exposure.

Highlights

  • We provided each group with water used for human consumption from three different Yaqui populations: Group I: normal control, animals received Mexican commercial water

  • Metal(Oid)s in Drinking Water Used in the Murine Model

  • The results indicate that Al, Ba, Cu, Fe, Mn, and Se are in concentrations lower than those established in the guidelines for drinking-water quality by the WHO

Read more

Summary

Introduction

Reports in a northwestern Mexico state linked arsenic (As) in drinking water to DNA damage in people from indigenous communities. This correlation remains under discussion due to unknown variables related to nutrition, customs, and the potential presence of other metal(oid)s. Conclusions: The obtained results provide experimental insights to understand the potential effects of untreated water with low As and Mn contents in murine models. This fact is noteworthy because of the development of histological changes on both the brain and liver at subchronic exposure

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call