Abstract

Forest management, especially understory vegetation conversion, significantly affects soil greenhouse gas (GHG) emissions and soil C and N pools. However, it remains unclear what effect renovating understory vegetation has on GHG emissions and soil C and N pools in plantations. This study investigates the impact of renovating understory vegetation on these factors in Chinese hickory (Carya cathayensis Sarg) plantation forests. Different understory renovation modes were used in a 12-month field experiment: a safflower camellia (SC) (Camellia chekiangoleosa Hu) planting density of 600 plants ha−1 and wild rape (WR) (Brassica napus L.) strip sowing (UM1); SC 600 plants ha−1 and WR scatter sowing (UM2); SC 1200 plants ha−1 and WR strip sowing (UM3); SC 1200 plants ha−1 and WR scatter sowing (UM4); and removal of the understory vegetation layer (CK). The results showed that understory vegetation modification significantly increased soil CO2 and emission fluxes and decreased soil CH4 uptake fluxes (p < 0.01). The understory vegetation transformation significantly improved soil labile carbon and labile nitrogen pools (p < 0.01). This study proposes that understory vegetation conversion can bolster soil carbon sinks, preserve soil fertility, and advance sustainable development of Chinese hickory plantation forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call