Abstract
AbstractPolyurethane foam (PUF)/clay nanocomposites were synthesized with clay modified by polymeric 4,4′‐diphenylmethane diisocyanate (PMDI) with the application of ultrasound. Transmission electron micrographs showed that the interlayer distance increased for the polyurethane (PU)/clay nanocomposites where ultrasound was applied. The results of the transmission electron microscopy and X‐ray measurements suggest that the application of ultrasound to the clay modification with PMDI improved the efficiency of the clay modification by the effective breakup of the clay agglomerates and intercalation of the silicate layers. In the mechanical tests of the PUF/clay nanocomposites, the flexural and tensile strengths of the PUF/clay nanocomposites showed the maximum value at 3.0 wt % clay content based on PMDI. These results suggest that the increases in the flexural and tensile strengths were perhaps due to the uniform dispersion of the clay by the application of ultrasound. At the same modified clay content, the fire resistance properties were increased for the PUF/clay nanocomposites with the application of ultrasound compared to the PUF/clay nanocomposites without the application of ultrasound. The cell size and thermal conductivity were decreased for the PUF/clay nanocomposites with the application of ultrasound compared to the PUF/clay nanocomposite without the application of ultrasound. Because of these results, we suggest that the smaller cell size and lower thermal conductivity of the PUF/clay nanocomposites were mainly due to the enhanced dispersion of the clay by the application of ultrasound to the mixture of PMDI and clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3764–3773, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.