Abstract

With rapid technological advancements, efficient thermal management is becoming increasingly important to sustain the stable operation of electronic devices. In this study, aluminum nitride (AlN) fillers with various acrylate monomers were subjected to two types of silane surface treatments to prepare composites with a high loading of AlN filler (65 wt%). The acrylates—isobornyl acrylate (IBOA), 1,4-butanediol diacrylate (BDDA), and trimethylolpropane triacrylate (TMPTA)—were mixed with bisphenol A ethoxylate dimethacrylate (Bis-EMA) as an oligomer, and phenylbis (2,4,6-trimethylbenzoyl)phosphine oxide (BAPO) as a photo-initiator in different proportions to obtain resin matrices. Pristine AlN and AlN functionalized with APTES and MPS were used as fillers. The effect of the acrylate functional group in silanes on the thermal and mechanical properties of the acrylate resin was explored. The thermal conductivities of the IBOA/AlN/APTES and IBOA/AlN/TMPTA composites with a high loading of the filler functionalized with APTES and MPS were 1.34 and 1.57 W/(m∙K), respectively, 4.15 and 5.28 times higher than that of the composite with neat resin. The enhanced filler–matrix compatibility increased the tensile strength of the composites. The findings highlighted that silane functionalization of AlN can enhance the thermal conductivity and mechanical properties of the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call