Abstract

To investigate the effects of bioturbation on absorption and enrichment of pollutants from sediments by aquatic organisms, microcosm systems similar to natural aquatic environment were established, and the release of Cu and Zn from the sediment, and their accumulation in some typical aquatic organisms, including submerged plants, floating plants and fish, with the presence of tubificids of different densities were measured. The results of this pilot study showed that the presence of tubificids promoted the migration of the trace metals from sediment to overlying water, especially when there were more worms and especially for Cu which is not easily released from the sediment. During the experiment, Cu in overlying water was mainly in particulate fraction. While for Zn, it was mainly in dissolved form in the early stage of the experiment, and then the dominant fraction gradually changed to particulate fraction. The bioturbation of tubificids also promoted the accumulation of both Cu and Zn in the aquatic organisms. In one system, different types of aquatic organisms showed different features for the accumulation of Cu and Zn. Meanwhile, with the presence of different intensity of bioturbation, the concentration of Cu or Zn in the same kind of organism was different. After a 30-day experiment, trace metal concentration in the aquatic organisms generally decreased in the order of floating plants (lesser duckweed) > submerged plants (Amazon sword) > small fish (zebrafish), and the concentration of Zn in the organisms was usually significantly higher than that of Cu in the same organism, especially in duckweed and zebrafish. However, the presence of tubificids and the density of them had more considerable effects on the uptake of Cu by the organisms, than on the uptake of Zn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call