Abstract

1. Diabetic neuropathy is one of the most common complications of diabetes and oxidative stress has been implicated to play a major role in its pathophysiology. 2. In the present study, we targeted oxidative stress using trolox, an anti-oxidant, in streptozotocin-induced diabetic neuropathy in rats. 3. Compared with control rats, diabetic rats showed significant deficits in motor nerve conduction velocity (MNCV; 49.91 +/- 1.94 vs 42.77 +/- 1.39 m/s, respectively) and nerve blood flow (NBF; 107.98 +/- 8.22 vs 38.9 +/- 2.7 arbitarary perfusion units, respectively) after 8 weeks of diabetes. Tail flick latencies for cold and hot immersion tests were also significantly reduced in diabetic rats, indicating thermal hyperalgesia. These observations indicate development of diabetic neuropathy. 4. A significant decrease in the activity of anti-oxidant enzymes (superoxide dismutase and catalase) and an increase in lipid peroxidation were observed in sciatic nerves from diabetic rats compared with age-matched control rats. Alterations in the activity of anti-oxidant enzymes and lipid peroxidation in diabetic rats indicate oxidative stress in diabetic neuropathy. 5. Two weeks treatment with trolox (10 and 30 mg/kg, i.p.) started on completion of the 6th week of diabetes significantly improved MNCV, NBF and inhibited thermal hyperalgesia. Trolox treatment also improved the activity of anti-oxidant enzymes and inhibited lipid peroxidation in sciatic nerves of diabetic rats. 6. The results of the present study suggest the beneficial effects of trolox in experimental diabetic neuropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call