Abstract
Effects of tritium content on crystal lattice, 3He retention and structure evolution during aging of Ti tritides were investigated using X-ray diffraction, together with analysis of 3He release. Phase transformation and lattice parameters of the Ti tritides varied apparently depending on tritium stoichiometry. Initial tritium content in the Ti tritides showed significant effects on 3He retention due to the existence of α + δ phase boundaries and lattice symmetry in the Ti tritide. The critical contents of 3He release in the α + δ phase region and ε phase region were found to be smaller than that in the δ phase region. Variation of crystal lattice structures of α + δ, δ and ε phases in the Ti tritides has been investigated, and evolution of 3He during aging is mainly governed by the finite defects of self-interstitial atoms, dislocation loops, 3He bubbles, and dislocations created by formation and growth of 3He bubbles. In the α + δ two phase region, the phase boundaries played an important role to accumulate 3He bubbles and cause inter-bubble fracture. In the ε phase region, a preferred condensation of finite defects in basal plane of Ti tritide lattice and formation of a dislocation network were identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.