Abstract

Two pot experiments and one field experiment were conducted on sugarcane to assess the effects of treatments expected to change total carbon assimilation on the partitioning of assimilate. In the first experiment pots of cultivars CP and N14 were arranged to simulate normal field spacing. At 5 months, plants were partially defoliated or left intact. In the subsequent four months, defoliation resulted in a small (not significant) decrease in total dry mass increment; it increased the proportional partitioning of assimilates to leaves in N14, whilst in CP it increased the proportional partitioning to stems. In both cultivars defoliation increased proportional allocation to non-structural dry matter, and thus sucrose, in the stem. In the second experiment pots of cv. CP were grown at normal spacing for 4 months, then left untreated, shaded, or placed further apart. During the subsequent four months shading decreased total dry matter increment, but increased proportional partitioning to the stems, and within stems to non-structural dry matter, and so sucrose. Widened spacing increased total assimilation, but decreased proportional allocation to stems; partitioning within the stems was not affected. In the field experiment plants of both cultivars were partially defoliated at 6 months, or left intact. Defoliation resulted in only a very small decrease in stem dry mass increment during the subsequent four months (leaves were not measured). Within the stem partial defoliation caused proportionally increased partitioning to non-structural dry matter, hence to sucrose. The results suggest that sucrose storage receives priority in the allocation of assimilate, rather than representing the accumulation of assimilate not required for vegetative growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call