Abstract

Oilseed rape (Brassica napus) characteristically has high N uptake efficiency and low N utilization efficiency (NUtE, seed yield/shoot N accumulation). Determining the NUtE phenotype of various genotypes in different growth conditions is a way of finding target traits to improve oilseed rape NUtE. The aim of this study was to compare oilseed rape genotypes grown on contrasting N supply rates in pot and field experiments to investigate the genotypic variations of NUtE and to identify indicators of N efficient genotypes. For 50 oilseed rape genotypes, NUtE, dry matter and N partitioning, morphological characteristics, and the yield components were investigated under high and low N supplies in a greenhouse pot experiment and a field trial. Although the genotype rankings of NUtE were different between the pot experiment and the field trial, some genotypes performed consistently in both two environments. N-responder, N-nonresponder, N-efficient and N-inefficient genotypes were identified from these genotypes with consistent NUtE. The correlations between the pot experiment and the field trial in NUtE were only 0.34 at high N supplies and no significant correlations were found at low N supplies. However, Pearson coefficient correlation (r) and principal component analysis showed NUtE had similar genetic correlations with other traits across the pot and field experiment. Among the yield components, only seeds per silique showed strong and positive correlations with NUtE under varying N supply in both experiments (r = 0.47**; 0.49**; 0.47**; 0.54**). At high and low N supply, NUtE was positively correlated with seed yield (r = 0.45**; 0.53**; 0.39**; 0.87**), nitrogen harvest index (NHI, r = 0.68**; 0.82**; 0.99**; 0.89**), and harvest index (HI, r = 0.79**; 0.83**; 0.90**; 0.78**) and negatively correlated with biomass distribution to stem and leaf (r = −0.34**; −0.45**; −0.37**; 0.62**), all aboveground plant section N concentration (r from −0.30* to −0.80**), N distribution to the vegetative parts (silique husk, stem and leaf) (r from −0.40** to −0.83**). N-efficient (N-responder) genotypes produced more seeds per silique and had significantly higher NHI and HI than did N-inefficient (N-nonresponder) genotypes. In conclusion, across the pot and field experiments, the 50 genotypes had similar underlying traits correlated with NUtE and seeds per silique may be a good indicator of NUtE.

Highlights

  • Rapeseed (Brassica napus) is one of the most important oilseed crops in the world

  • Some genotypes performed consistently at both the controlled and the complex growth conditions. Based on their N utilization efficiency (NUtE) values, 5 genotypes were ranked as N-responder, 6 genotypes were ranked as N-nonresponder, 4 genotypes were ranked as N-efficient and 4 genotypes were ranked as N-inefficient in the pot and field experiments (Figures 1C,D)

  • Previous pot studies (Cao et al, 2010) showed that oilseed rape genotypes with high N uptake efficiency had significantly higher root biomasses, and significant larger ratios of root biomass to whole plant biomass than did those with low N uptake efficiency. These results suggest that the root plays different roles in N utilization efficiency and N uptake efficiency

Read more

Summary

Introduction

Rapeseed (Brassica napus) is one of the most important oilseed crops in the world. Nitrogen (N) is of great importance in cultivating oilseed rape because this species requires more N to produce one unit of yield than most arable crops, such as sugar beet (Beta vulgaris L.) and winter wheat (Triticum aestivum L.) (Sylvester-Bradley and Kindred, 2009). Sylvester-Bradley and Kindred (2009) showed the lower NUE of oilseed rape relative to other crops was caused by lower NUtE rather than NUpE, because it has an early developed extensive root system (Kamh et al, 2005), and incomplete N remobilization from the vegetative parts into the seeds (Aufhammer et al, 1994; Schjoerring et al, 1995; Hocking et al, 1997; Wiesler et al, 2001). Berry et al (2010) and Ulas et al (2013) showed that N uptake post-flowering was an important trait underlying genotypic variation in yield at low and high N supply

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call