Abstract

During fusion reactor operation, transmutation elements such as rhenium (Re) and osmium (Os) are produced from tungsten (W) upon neutron irradiation. Thus, the pure W becomes W–Re or W–Re–Os alloys and its physical properties gradually change. The irradiation hardening, microstructural changes, and physical properties of these transmutation elements of W are here investigated. Tungsten-based model alloys are fabricated and neutron irradiation is performed in the JOYO fast test reactor. The irradiation dose and temperature are 0.17–1.54 dpa and 400–750 °C, respectively. Vickers hardness measurements, microstructural observations, and electrical resistivity measurements are subsequently performed. The effects of the microstructural evolution on the irradiation hardening and electrical resistivity are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.