Abstract

The paper reports the results of an experiment on the performance and retention of a complex task. This was a computer-based simulation of the essential elements of a spacecraft's life support system. It allowed the authors to take a range of measures, including primary and secondary task performance, system intervention and information sampling strategies, mental model structure, and subjective operator state. The study compared the effectiveness of two methods of training, based on low level (procedure-based) and high level (system-based) understanding. Twenty-five participants were trained extensively on the task, then given a 1-h testing session. A second testing session was carried out 8 months after the first (with no intervening practice) with 17 of the original participants. While training had little effect on control performance, there were considerable effects on system management strategies, as well as in structure of operator's mental model. In the second testing session, the anticipated general performance decrement did not occur, though for complex faults there was an increase in selectivity towards the primary control task. The relevance of the findings for training and skill retention in real work environments is discussed in the context of a model of compensatory control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call