Abstract

Undoped GaSb epitaxial layers have been grown on (100) GaSb and GaAs substrates by low pressure MOCVD. It was found that the layer morphologies were strongly dependent on TMSb/TEGa (V/Ill) ratios. The mirrorlike surface can be easily obtained under V/Ill ratio in the range of 68 at growth temperature 600 C and growth pressure 100 torr. Beyond this range the surface deteriorated seriously. The epilayers were characterized by electron diffraction patterns and photoluminescent measurements. The boundexciton (BE) peaks and strong acceptor band peak in PL spectra were observed from the sample grown under V/Ill ratio of 6. 84 on GaSb substrates. PL peak intensity was found to be a function of the V/Ill ratios. When V/Ill ratios increased beyond the range of 68 the BE peaks disappeared and PL spectra became roughened. The full width at half maximum (FWHM) of acceptor-band peaks in PL spectra was dependent on V/Ill ratios ensuring that obtained from the analysis of surface morphology. IV characteristics of the pn diodes fabricated on the sample of undoped-GaSb/GaSb:Te was measured. The electrical properties of undoped GaSb were studied from the epilayers grown on GaAs semiinsulating substrates. The hole concentration increased and mobility decreased with growth temperature between 520 and 635C under V/1116. 84. For 550 C grown epilayers: as V/Ill ratio increased above 6. 64 or decreased below 6. 64 the hole concentration increased and hole mobility decreased. .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.