Abstract
Compounds in sunscreen such as ultraviolet (UV) filters protect human skin from damage caused by UV radiation exposure. However, sunscreen components reach marine ecosystems after their release from human skin during activities such as swimming and washing, and are potentially toxic to marine organisms. TiO2 and ZnO nanoparticles (NPs) are commonly used as inorganic UV filters. In this study, we explored the effects of TiO2 and ZnO NPs on natural phytoplankton assemblages in coastal seawater. Growth rates of natural phytoplankton assemblages were significantly decreased by 10 mg L−1 TiO2 and 1 and 10 mg L−1 ZnO NP treatments. NP addition also modified the size structure of phytoplankton assemblages, and small phytoplankton (mainly cyanobacteria) are vulnerable to NPs. Because herbivore food preferences depend strongly on algal cell size, NP contamination could also affect higher trophic levels. Notably, small phytoplankton are an important component in microbial loop, and this energy transfer pathway may be more vulnerable to NP contamination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have