Abstract

Abstract. Mangrove forests are ecosystems that constitute a large portion of the world's coastline and span tidal zones below, between, and above the waterline, and the ecosystem as a whole is defined by the health of these tidal microhabitats. However, we are only beginning to understand tidal-zone microbial biodiversity and the role of these microbiomes in nutrient cycling. While extensive research has characterized microbiomes in pristine vs. anthropogenically impacted mangroves, these have, largely, overlooked differences in tidal microhabitats (sublittoral, intertidal, and supralittoral). Unfortunately, the small number of studies that have sought to characterize mangrove tidal zones have occurred in impacted biomes, making interpretation of the results difficult. Here, we characterized prokaryotic populations and their involvement in nutrient cycling across the tidal zones of a pristine mangrove within a Brazilian Environmental Protection Area of the Atlantic Forest. We hypothesized that the tidal zones in pristine mangroves are distinct microhabitats, which we defined as distinct regions that present spatial variations in the water regime and other environmental factors, and as such, these are composed of different prokaryotic communities with distinct functional profiles. Samples were collected in triplicate from zones below, between, and above the tidal waterline. Using 16S ribosomal RNA (rRNA) gene amplicon sequencing, we found distinct prokaryotic communities with significantly diverse nutrient-cycling functions, as well as specific taxa with varying contributions to functional abundances between zones. Where previous research from anthropogenically impacted mangroves found the intertidal zone to have high prokaryotic diversity and be functionally enriched in nitrogen cycling, we find that the intertidal zone from pristine mangroves has the lowest diversity and no functional enrichment, relative to the other tidal zones. The main bacterial phyla in all samples were Firmicutes, Proteobacteria, and Chloroflexi while the main archaeal phyla were Crenarchaeota and Thaumarchaeota. Our results differ slightly from other studies where Proteobacteria is the main phyla in mangrove sediments and Firmicutes makes up only a small percentage of the communities. Salinity and organic matter were the most relevant environmental factors influencing these communities. Bacillaceae was the most abundant family at each tidal zone and showed potential to drive a large proportion of the cycling of carbon, nitrogen, phosphorus, and sulfur. Our findings suggest that some aspects of mangrove tidal zonation may be compromised by human activity, especially in the intertidal zone.

Highlights

  • Mangrove ecosystems exist at the interface of land and sea and constitute a large portion of tropical and subtropical coastlines, spanning 118 countries and approximately 137 000 km2 (Giri et al, 2011)

  • We refer to the differences in microhabitats and biodiversity in mangrove sediments as zonation, and we consider the mangroves to be divided into three main tidal zones, where the sublittoral zone is always immersed, while the intertidal zone is exposed to daily variations in water content and the supralittoral zone is the region that presents mangrove vegetation but normally is above the sea level

  • In this study we aimed to characterize the prokaryotic microbiota from sediments of three tidal zones in a pristine mangrove located in the Serinhaém estuary, within the Environmental Protection Area of Pratigi, using 16S ribosomal RNA gene amplicon sequencing

Read more

Summary

Introduction

Mangrove ecosystems exist at the interface of land and sea and constitute a large portion of tropical and subtropical coastlines, spanning 118 countries and approximately 137 000 km (Giri et al, 2011). Within these ecosystems, the recycling of elements occurs via tightly coupled exchanges between plants, microorganisms, and microbes, with Bacteria and Archaea playing important roles in the biogeochemical cycling of carbon, nitrogen, and phosphate (Imchen et al, 2017; Lin et al, 2019; Alongi, 1988; Reis et al, 2017; Holguin et al, 2001). Understanding the interrelationship of mangrove tidal zones, their microbial populations, and their role in nutrient cycling is a key component in understanding mangrove adaptation and conservation (Coldren et al, 2019; Saintilan et al, 2020; Shiau and Chiu, 2020; Allard et al, 2020)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.