Abstract

BackgroundpH is frequently reported as the main driver for prokaryotic community structure in soils. However, pH changes are also linked to “spillover effects” on other chemical parameters (e.g., availability of Al, Fe, Mn, Zn, and Cu) and plant growth, but these indirect effects on the microbial communities are rarely investigated. Usually, pH also co-varies with some confounding factors, such as land use, soil management (e.g., tillage and chemical inputs), plant cover, and/or edapho-climatic conditions. So, a more comprehensive analysis of the direct and indirect effects of pH brings a better understanding of the mechanisms driving prokaryotic (archaeal and bacterial) community structures.ResultsWe evaluated an agricultural soil pH gradient (from 4 to 6, the typical range for tropical farms), in a liming gradient with confounding factors minimized, investigating relationships between prokaryotic communities (16S rRNA) and physical–chemical parameters (indirect effects). Correlations, hierarchical modeling of species communities (HMSC), and random forest (RF) modeling indicated that both direct and indirect effects of the pH gradient affected the prokaryotic communities. Some OTUs were more affected by the pH changes (e.g., some Actinobacteria), while others were more affected by the indirect pH effects (e.g., some Proteobacteria). HMSC detected a phylogenetic signal related to the effects. Both HMSC and RF indicated that the main indirect effect was the pH changes on the availability of some elements (e.g., Al, Fe, and Cu), and secondarily, effects on plant growth and nutrient cycling also affected the OTUs. Additionally, we found that some of the OTUs that responded to pH also correlated with CO2, CH4, and N2O greenhouse gas fluxes.ConclusionsOur results indicate that there are two distinct pH-related mechanisms driving prokaryotic community structures, the direct effect and “spillover effects” of pH (indirect effects). Moreover, the indirect effects are highly relevant for some OTUs and consequently for the community structure; therefore, it is a mechanism that should be further investigated in microbial ecology.

Highlights

  • PH is frequently reported as the main driver for prokaryotic community structure in soils

  • The indirect effects of pH in soils are wide ranging. pH affects the solubility of different elements, including aluminum (Al3+), which can be toxic to plants and microorganisms (Al3+ availability decreases with pH, being completely precipitated in pH > 5.5), and affects the solubility of nutrients (SI 1) [4, 8, 10, 11]

  • Some effects were observed at Phylum level (Table 1 and Additional file 5), including two archaeal phyla and 17 bacterial phyla that correlated with pH (e.g., Bacteroides p 0.65, Hydrogenedentes p 0.74, and WD272 p − 0.78; P < 0.001)

Read more

Summary

Introduction

PH is frequently reported as the main driver for prokaryotic community structure in soils. PH changes are linked to “spillover effects” on other chemical parameters (e.g., availability of Al, Fe, Mn, Zn, and Cu) and plant growth, but these indirect effects on the microbial communities are rarely investigated. Mineral nutrient availability in soil is mainly studied in an agricultural context and focuses on plant-available soluble fractions [8, 12], but these fractions usually correlate with microbial community structures [4, 13,14,15,16,17]. In acidic conditions, increased Fe and Mn solubility may cause toxicity to plants [8, 18, 19] Due to these characteristics, plant growth is usually optimal in the pH (CaCl2) range of 5.5–6.5 [8, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call