Abstract
AbstractMg‐based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni, and Mg0.9Ti0.06Zr0.04Ni were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg‐based materials were studied. The X‐ray diffraction (XRD) result shows that the main phases of the alloys exhibit amorphous structure. The scanning electron microscopy (SEM) photograph shows that the particle size of Ti and Zr substituted alloys was about 2–4 µm in diameter. The cycle lives of the alloys were prolonged by adding Ti and Zr. After 50 charge‐discharge cycles, the discharge capacity of Mg0.9Ti0.06Zr0.04Ni was 91.74% higher than that of MgNi alloy and 37.96% higher than that of Mg0.9Ti0.1Ni alloy. The main reason for the electrode capacity decay is the formation of Mg(OH)2 (product of Mg corrosion) at the surface of alloy. The potentiodynamic polarization result indicates that Ti and Zr doping improves the anticorrosion in an alkaline solution. The electrochemical impedance spectroscopy (EIS) results suggest that proper amount of Ti and Zr doping improves the electrochemical catalytic activity significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.