Abstract

Objectives: The aim of the study was to evaluate the effect of resin attachments on the displacement and deformation pattern of the aligner plastic, determine the center of rotation and stress distribution in the upper canine during space closure using the finite element method (FEM), and evaluate the plastic Aligner deformation. Materials and Method s: A computer-assisted design model of the superior right hemiarch was constructed with the simulation of a first premolar extraction and a canine distalization, recreating the periodontal ligament and alveolar bone. FEMs were created to analyze the behavior of stress and displacement of the upper right canine with aligners in four situations, one without attachment, and three with bonded attachments (vertical rectangular, rectangular beveled, optimized root control). In addition, the plastic deformation of the aligner was evaluated. Results: In the simulation without attachment, there was no apical movement, while with vertical rectangular and rectangular beveled the behavior was similar with crown distal displacement and mesial apex displacement. The optimized attachment had a better movement control of the canine body respecting the crown and apical movement toward the same direction. The mayor plastic deformation was shown without attachment and no deformation was evidenced with optimized attachment. Conclusion: The FEM showed that nevertheless the optimized attachment produced a distal crown and apical displacement with the use of plastic aligners during the space closure, the apex only moved ¼ of the distal crown movement. Our results suggest that to obtain a pure translation of the canine with aligners, it would be necessary the use of auxiliars which complement the needed biomechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call