Abstract

This paper introduces a numerical scheme for simulating instabilities of a nonlinear rotordynamic system including thermal effects in the fluid film bearings. The method utilizes shooting/arc-length continuation, and simultaneous, finite element based solutions of the variable viscosity Reynolds equation and the energy equation. This provides a means to investigate the effects of the thermo-hydrodynamic THD model on bifurcations and nonlinear rotordynamic stability. A “Jeffcott” type rigid rotor is modeled as supported on double-layered fluid film, floating ring bearings (FRB). The FRB are known to produce highly nonlinear forces as functions of relative and absolute internal displacements and velocities. Both autonomous (free vibration) and non-autonomous (mass unbalanced excitation) cases and algorithms are presented. The computational workload and execution time required for determining coexisting periodic solutions is significantly reduced by employing deflation and parallel computing methods. The THD model nonlinear responses and bifurcation diagrams are compared with isoviscous model results for various lubricant supply temperatures. The autonomous case, THD model orbit sizes and onset of Hopf and saddle–node bifurcations for coexisting steady state responses, may have significant differences relative to the isothermal model results. The onset of Hopf bifurcation is strongly dependent on thermal conditions, and the saddle–node bifurcation points are significantly shifted compared to the isothermal model. This tends to increase the likelihood of bifurcation from a machine operators standpoint. In the non-autonomous case, large unbalance forces create sub-synchronous and quasi-periodic responses at low spin speeds. The responses stability and onset of bifurcations of these responses are highly reliant on the lubricant supply temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.