Abstract
PurposeThe purpose of this paper is to propose a quasi-three-dimensional (3D) thermohydrodynamic (THD) model for oil film bearings with non-Newtonian and temperature-viscosity effects. Its performance factors, including precision and time consumption, are investigated.Design/methodology/approachTwo-dimensional (2D), 3D and quasi-3D numerical models are built. The thermal and mechanical behaviors of two types of oil film bearings are simulated. All the results are compared with solutions of commercial ANSYS CFX.FindingsThe 2D THD model fails to predict the temperature and pressure field. The results of the quasi-3D THD model coincide well with those of the 3D THD model and CFX at any condition. Compared with the 3D THD model, the quasi-3D THD model can greatly reduce the CPU time consumption, especially at a high rotational speed.Originality/valueThis quasi-3D THD model is proposed in this paper for the first time. Transient mechanical and thermal analyses of high-speed rotor-bearing system are widely conducted using the traditional 3D THD model; however, the process is very time-consuming. The quasi-3D THD model can be an excellent alternative with high precision and fast simulation speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.