Abstract

Recently calcium sulfoaluminate cements gain increasing attention due to their significant potential to reduce the carbon footprint of cement production compared to Portland cement. However, the conditions applied during its processing play a crucial role for the stability and longevity of the material. Thereby, the temperature has a decisive influence, as it is already known from numerous studies that ettringite structurally changes significantly upon thermal induced dehydration. Within this background, the present study subjects a holistic view of the mechanical, morphological, phase and structural changes of a commercial calcium sulfoaluminate cement related to the dehydration of the contained ettringite upon treatment at drying temperatures from 23 °C to 100 °C for 7 and 28 days. By complementary methods it is shown that with increasing curing temperature, the mechanical stability decreases, the total pore area and porosity increase, while the permeability of the microstructure is lower for samples stored at 100 °C. Removal of water increases the intercolumnar distance within the ettringite lattice, thereby inducing strain which is released upon rehydration. Although during storing at a temperature of 100 °C ettringite is transformed into an X-ray amorphous product, the initial morphology of the crystals embedded in the cementitious matrix is retained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.