Abstract

The frequency-temperature behavior of a piezoelectric crystal resonator can be predicted quite accurately if the resonator is under a stress-free and steady-state uniform temperature condition. The condition is however seldom achieved practically. Most practical resonators are subjected to thermal stresses. Conventional finite element analytical tools such as ANSYS cannot provide a sufficiently accurate model for the frequency-temperature behavior of piezoelectric quartz resonators. A new dynamic frequency-temperature model which accurately predicted the frequency-temperature behavior of quartz resonators affected by transient and steady state temperature changes was presented. Lagrangean equations for small vibrational (incremental) displacements superposed on initial thermal stresses and strains were employed. The initial thermal stresses and strains were obtained from the uncoupled heat and thermoelastic equations. The constitutive equations for the incremental displacements incorporated the temperature derivatives of the material constants. Numerical results were compared with the experimental results for a 50 MHz AT-cut quartz resonator mounted on a glass package. Good comparisons between the experimental results and numerical results from our new model were found. The differences between the thermal expansion coefficients of glass and quartz gave rise to the thermal stresses that had adverse effects on the frequency stability of resonators. Different optimal crystal cut angles of quartz, and resonator geometry were found to achieve stable frequency-temperature behavior of the resonator in a glass package. The dynamic frequency-temperature model was used in the theoretical analyses and designs of high Q, 3.3 GHz, quartz thin film resonators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call