Abstract

The effects of the thermal history on enthalpy relaxation in polymethylmethacrylate (PMMA) have been studied by differential scanning calorimetry (DSC). The temperature dependence of specific heat capacity in the liquid and glassy states, that of relaxation time and the exponent of the Kohlrausch–Williams–Watts function have been obtained by the measurement of the response of heat flux to the sinusoidal temperature variation. The phenomenological model equation as an extension of linear rheology has been applied to enthalpy relaxation. The evolution of entropy under a given thermal history same as the experiment has been calculated and compared with the DSC results. The calculated results reproduce two peaks of specific heat capacity at lower and higher temperatures in the glass transition region: the former is characteristic of PMMA and the latter is observed in typical glassy polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.