Abstract
Fractal geometry plays an important role in the description of the characteristics of nature. Local fractional calculus, a new branch of mathematics, is used to handle the non-differentiable problems in mathematical physics and engineering sciences. The local fractional inequalities, local fractional ODEs and local fractional PDEs via local fractional calculus are studied. Fractional calculus is also considered to express the fractal behaviors of the functions, which have fractal dimensions. The interesting problems from fractional calculus and fractals are reported. With the scaling law, the scaling-law vector calculus via scaling-law calculus is suggested in detail. Some special functions related to the classical, fractional, and power-law calculus are also presented to express the Kohlrausch–Williams–Watts function, Mittag-Leffler function and Weierstrass–Mandelbrot function. They have a relation to the ODEs, PDEs, fractional ODEs and fractional PDEs in real-world problems. Theory of the scaling-law series via Kohlrausch–Williams–Watts function is suggested to handle real-world problems. The hypothesis for the tempered Xi function is proposed as the Fractals Challenge, which is a new challenge in the field of mathematics. The typical applications of fractal geometry are proposed in real-world problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.