Abstract

In this paper, three kinds of wall conditions are numerically simulated to investigate deposition, powder recovery and energy aspects of spray dryers. A co-current dryer with a pressure nozzle is chosen as a base dryer and two dryers with fully insulated, and cooled walls are compared with the base one. Governing equations of a transient flow field are solved through the Eulerian approach, while Lagrangian particle tracking predicts particles’ motion. The sticky point curve is employed as a criterion of bouncing or stickiness to model the deposition pattern of skim milk particles on the surfaces. Results show that the spray dryer with cooled walls has better deposition characteristics, while the dryer with insulated surfaces works with higher drying efficiency. Overall, it is observed that the wall conditions can be changed to improve the drying efficiency and wall deposition. However, changing the thermal boundary conditions does not seem to be effective in improving the powder recovery. • The performance of dryers was investigated in three different dryers. • The sticky point curve was considered on the walls. • Maximum powder recovery obtained in the base dryer. • Significant deposition reduction observed in the cooled-walls dryer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.