Abstract
AbstractA numerical analysis based on adjoint formulation of unsteady forced convection heat transfer is proposed to generally evaluate effects of the thermal boundary condition on the heat transfer characteristics. A numerical solution of the adjoint problem enables us to predict the heat transfer characteristics, such as the total heat transfer rate or the temperature at a specific location, when the thermal boundary conditions change arbitrarily with time. Moreover, using the numerical solution of the adjoint problem, we can obtain the optimal thermal boundary conditions in both time and space to maximize the heat transfer at any arbitrary time. Numerical solutions of the adjoint problem in a lid‐driven cavity are presented to illustrate the capability of the present method. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 237–247, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.10032
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.